

Anticipating and Managing Fragility in Large Complex Project Ecosystems¹

Bob Prieto

Large complex projects (LCP)² are characterized by unacceptably high project failure rates. The challenges that LCP face include inherent complexity³, uncertainty⁴, multiplicity of stakeholders compounding an already complicated project ecosystem, and a myriad of assumptions⁵, migrating in often entangled ways, undermining the best project planning and increasing the fragility of the project management framework.

Prior works have looked at each of these aspects within a framework of what has been referred to as Quantum Project Management (QPM)^{6 7 8}. QPM draws an analog between the world of large complex projects and the world of physics where Newtonian theory

¹ How to cite this paper: Prieto, R. (2026). Operationalizing Quantum Project Management: *Anticipating and Managing Fragility in Large Complex Project Ecosystems*, *PM World Journal*, Vol. XV, Issue II, February.

² A Large Complex Project (LCP) refers to projects characterized by many interdependent components, multiple stakeholder groups, long durations, high uncertainty, and significant technical, organizational, or regulatory complexity; LCPs typically exhibit nonlinear behaviors, emergent risks, and governance challenges that differ from routine projects.

³ Managing Complexity in Large Complex Projects; Prieto, R., Hajiya, A.; PM World Journal; Vol. XIII, Issue XI – December 2024; <https://pmworldlibrary.net/wp-content/uploads/2024/12/pmwj147-Dec2024-Prieto-Hajiya-Managing-Complexity-in-Large-Complex-Projects.pdf>, https://www.researchgate.net/publication/386870526_Managing_Complexity_in_Large_Complex_Projects#fullTextFileContent

⁴ Prieto, R. (2025). Measuring Uncertainty in Large Complex Projects, PM World Journal, Vol. XIV, Issue XI, November; <https://pmworldlibrary.net/wp-content/uploads/2025/11/pmwj158-Nov2025-Prieto-Managing-Uncertainty-in-Large-Complex-Projects-3.pdf>, https://www.researchgate.net/publication/397300009_Managing_Uncertainty_in_Large_Complex_Projects_1#fullTextFileContent

⁵ Prieto, R. (2025). Metrics for Assumption Management in Large Complex Projects, *PM World Journal*, Vol. XIV, Issue XII, December

⁶ Quantum Project Management (QPM) is a conceptual framework that borrows metaphors and analytical tools from complex systems and quantum thinking to describe entanglement, measurement sensitivity, and emergent behavior in projects; QPM emphasizes non decomposable risk, interaction effects, and the need for metrics that capture systemic dynamics rather than only additive risk.

⁷ Prieto, R. (2024). Quantum Project Management, PM World Journal, Vol. XII, Issue I, January 2024. <https://pmworldlibrary.net/wp-content/uploads/2024/01/pmwj137-Jan2024-Prieto-Quantum-Project-Management-.pdf>

⁸ Quantum Project Management A monograph on a new theory for management of large complex projects (2024); ISBN 978-1-304-08165-0

described the world around us well but failed at complexity and scale. We have seen this need to evolve our theoretical frameworks when considering other large complex domains and quantum behaviors such as emergence and entanglement are now core to many of today's most important technological breakthroughs.

This paper focuses on anticipating and managing the fragility we see in LCP ecosystems specifically considering the fragility which arises from assumption migration⁹. A recent paper (Prieto 2025, November) looks closely at two relevant measures of assumption migration:

- Assumption Governance Index (AGI) which quantifies the integrity of assumptions by measuring migration, consequence, and confidence decay.
- Assumption Diffusion Index (ADI) which models how changes propagate across entangled assumptions, revealing systemic exposure pathways.

In this paper we will extract the essence of the prior paper but with a significantly lighter touch on the underlying mathematics that was essential to adequately describe the thought process and new metrics to be considered. This is a point worth underscoring. The world of LCP, as described by Quantum Project Management, demands new metrics to facilitate managing these failure prone endeavors differently.

We will then build on these recapitulations of AGI and ADI by introducing a third, new, assumption focused metric looking at the project fragility created by a broader project ecosystem underpinned by a myriad of assumptions, ones that migrate and are entangled.

This new metric, the Emergent Fragility Index (EFI), detects nonlinear amplification in assumption clusters, surfacing latent brittleness before AGI or ADI respond. EFI is making its first appearance here and as such will be detailed more than the summarized sections on AGI and ADI. Together AGI, ADI and EFI enhance and go beyond traditional governance tools such as Earned Value Management (EVM), risk registers, and lagging KPIs, which by themselves have proven to be insufficient to detect the complex dynamics we see in LCP.

Together, AGI + ADI + EFI support implementation of **Quantum Project Management (QPM)**, transforming assumption management from a passive administrative task into a predictive governance capability.

⁹ Assumption migration denotes the change over time in an assumption's value, scope, or applicability relative to its baseline (for example, a shift in expected material lead time); migration can be gradual or abrupt and is measured as a normalized distance from the original baseline.

1.0 LCP Fragility begins with Assumptions

Assumptions are the **unseen scaffolding** of every LCP. They underpin cost estimates, schedules, safety protocols, and stakeholder expectations. Yet they are often:

- Fragmented across documents and teams.
- Recorded informally, without traceability.
- Allowed to age without confidence modeling.

More specifically LCP face key challenges that include:

- **Fragmented assumptions and sparse and often non-existent assumption registers**, a basic first step in managing assumptions. Assumptions are recorded unevenly, often informally, so the project baseline is brittle and untraceable.
- **Aging and confidence erosion as baseline assumptions grow stale.** Confidence decays but is rarely modeled, producing surprise when foundations fail.
- **Entanglement¹⁰ and nonlinearity**, resulting from many assumptions being tightly coupled such that small changes can cascade nonlinearly across domains (cost, schedule, safety, stakeholder).
- **Weak leading indicators.** Traditional EVM and risk KPIs are lagging indicators. They measure realized deviations but not the erosion or propagation potential of the underlying project model.
- **Operational friction resulting in governance workflows that lack auditable, repeatable decision triggers mapped to evidence.** Rebaselines, contingencies, and controls are slow, costly, and politically fraught as individuals avoid “kill the messenger” reactions.

Traditional metrics measure realized deviations (e.g., cost overruns, schedule slips) but fail to capture **erosion of foundational assumptions**. This creates *systemic fragility* as micro-migrations accumulate unnoticed until they synchronize into macro failure.

Let's look at three metrics which offer the potential to detect and better manage this fragility from assumption migration. Each builds on the other. Together they provide a powerful new way to consider LCP, one that recognizes the properties inherent in all large complex system.

¹⁰ Entanglement describes tight coupling among assumptions or subsystems such that a change in one element produces correlated changes elsewhere; unlike simple dependency, entanglement implies bidirectional influence, feedback loops, and the potential for nonlinear amplification.

2.0 Assumption Governance Index (AGI)

AGI is a normalized, governance-grade index that quantifies the integrity of a project's assumption foundation. It combines per-assumption migration, consequence, and time-aware confidence into a single, auditable metric.

It assesses the instantaneous governance exposure arising from:

- how far each assumption has migrated from its baseline
- how consequential that assumption is across cost/safety/schedule/reputation, and
- how much confidence remains in the baseline estimate.

AGI exposes category-level drivers (technical, economic, client, environmental, productivity) and converts granular, distributed assumption records into a concise signal that executives and owner and project governance boards can use to prioritize rebaselining¹¹, contingency allocation, and targeted mitigation.

AGI assesses assumptions using a well-structured methodology that considers:

- **Inputs** - category, value, critical tolerance, confidence, decay rate, volatility parameter, consequence component scores
- **Per-assumption migration, M_i** ¹² - a normalized distance of current vs baseline assumption "values".
- **Consequence weight, W_i** ¹³, from a normalized combination of documented and peer reviewed (to avoid gaming) consequence component scores.
- **Confidence decay, $C_i(t)$** ¹⁴, reflecting baseline confidence that decays with time and increases sensitivity after disruptive events via an event amplification multiplier.
- **Aggregation**, where higher AGI means more substantive migration among consequential/low-confidence assumptions.

¹¹ Rebaselining is the formal process of updating project baselines (scope, schedule, cost, assumptions) to reflect validated changes; it typically requires documented evidence, governance approval, and may trigger contract or funding adjustments.

¹² The migration score is a normalized numeric measure of how far an assumption has shifted from its baseline value at a given time; it is typically scaled to a common range (e.g., 0–1) so disparate assumptions can be compared and aggregated.

¹³ Consequence weight is a governance driven scalar that reflects the relative impact of an assumption across dimensions such as cost, schedule, safety, and reputation; weights are normalized so that higher values indicate greater systemic importance in aggregation and analytics.

¹⁴ Confidence decay models the erosion of belief in an assumption's baseline over time or after disruptive events; it can be represented as a time dependent function that reduces effective confidence and increases sensitivity to migration.

- **Category indices**, where per-assumption terms are aggregated and normalized within domains for targeted action.
- **Statistical monitoring**: unweighted/weighted means and standard deviations, skewness¹⁵ and kurtosis¹⁶, delta-change metrics and bootstrapped confidence intervals¹⁷ to detect significant changes and concentration risk.
- **Entanglement gating**: when co-migration clusters exceed thresholds, cluster amplification scales AGI nonlinearly to reflect emergent system risk, a behavior QPM is focused on.

Simplified Methodology

A simplified approach to AGI determination looks at individual assumption migrations and can be summarized as follows which each value at a specific point in time (baseline, current):

$$AGI(t) = 100 \cdot \sum_i (W_i \cdot C_{i(t)} \cdot M_{i(t)})$$

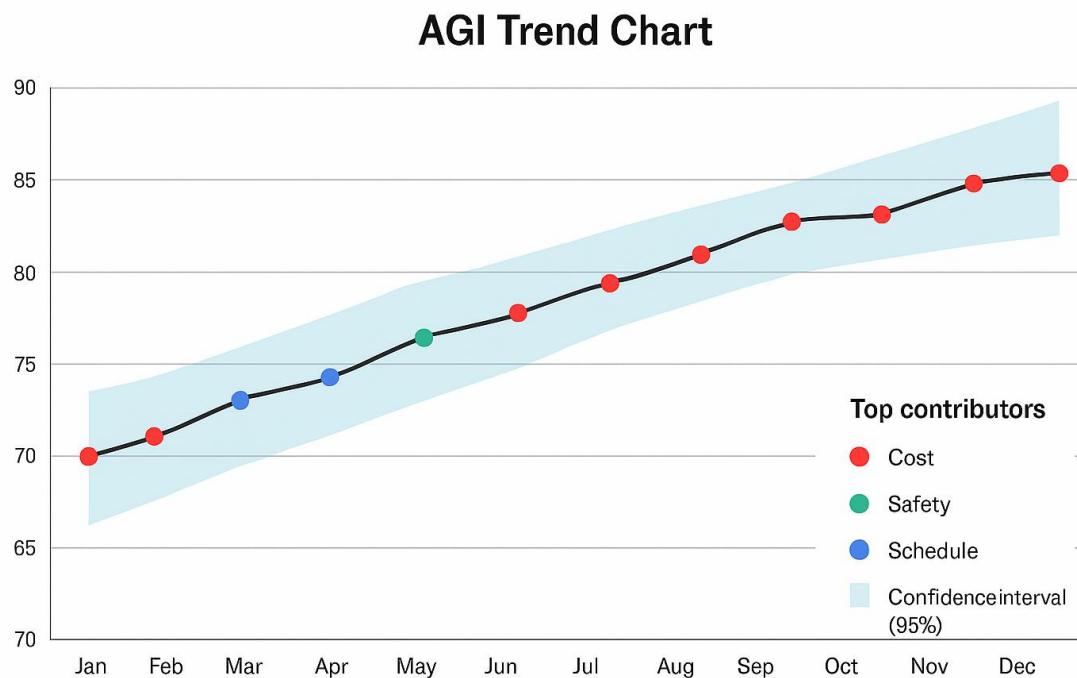
Input	Description
Migration (Mi)	Normalized distance between baseline and current values
Consequence Weight (Wi)	Governance impact across cost, safety, schedule, reputation
Confidence Decay (Ci)	Time-sensitive confidence that erodes with age or disruptive events

AGI Insights

AGI provides:

- Early detection of foundation erosion before cost or schedule metrics deteriorate.
- Materiality-aware prioritization so low-visibility but high-consequence assumption drift is surfaced.

¹⁵ Skewness measures asymmetry. If data lean to the right (a long tail toward larger values), skewness is positive; if they lean left (a long tail toward smaller values), skewness is negative. For project metrics this flags whether most outcomes cluster on one side of the mean while a few extreme values pull the tail.


¹⁶ Kurtosis describes tail weight and peakiness relative to a normal (bell) curve. Higher kurtosis means fatter tails and a sharper peak: more outcomes are clustered near the center, but extreme events are more likely than under a normal distribution.

¹⁷ Bootstrapped confidence intervals are uncertainty bounds derived by resampling the observed data with replacement; they provide distribution free estimates of variability for statistics (means, AGI, etc.) when theoretical assumptions about distributions may not hold..

- Traceable escalation triggers tied to per-assumption evidence and explicit thresholds (Mi, AGI bands).
- Audit-ready narratives: every AGI change links to the register evidence, owner, and decision rule.

AGI Trend Chart

The following line shows AGI over time with confidence bands and highlights top contributors by category (cost, safety, schedule, reputation). The synthetic data associated with this illustrative AGI Trend Chart can be found in Appendix 1.

AGI provides a concise, auditable signal of assumption erosion, enabling project managers and executives to:

- Detect foundation decay early.
- Prioritize rebaselining and contingency allocation.
- Trigger targeted mitigation tied to evidence.

3.0 Assumption Diffusion Index (ADI)

The Assumption Diffusion Index (ADI) quantifies how changes to one or more assumptions propagate across the assumption network providing additional context and color for what is observed in the AGI. It quantifies how a change to one or more assumptions is likely to propagate across the assumption network over a chosen horizon, capturing spread, velocity, and reach¹⁸ on a consequence-weighted basis.

Given a source migration, ADI answers:

- which other assumptions will be exposed
- how much of portfolio consequence will be affected, and
- how quickly that exposure will materialize

ADI reveals diffusion hubs¹⁹ and pathways that AGI's point-in-time magnitude alone cannot show.

ADI's methodology to assess propagation²⁰ is built on and considers:

Graph foundation	Assumptions as nodes; edges encode directional influence
Temporal kernel	Models attenuation of influence over time
Propagation model	Iteratively simulates spread (footprint), velocity, and reach

Its core metrics²¹ are:

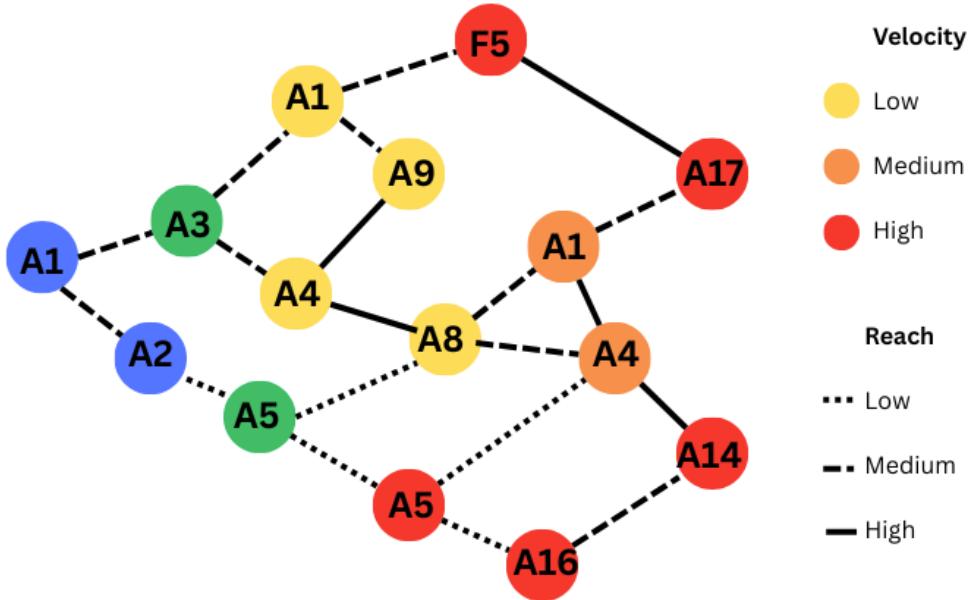
- **ADI(H)**: portfolio-normalized aggregate of source footprints²²
- **Velocity, $Vi(p)$** : time to reach p% of the source's footprint
- **Reach, $Ri(H)$** : fraction of total portfolio consequence potentially affected by source i.

¹⁸ Spread (how many and which nodes are affected); velocity (how quickly those effects materialize); reach (which nodes act as diffusion hubs).

¹⁹ A diffusion hub is an assumption node that, despite possibly modest local migration, has outsized propagation pathways and therefore can act as a conduit for systemic exposure; hubs are prioritized for monitoring and edge level controls.

²⁰ The propagation model simulates how migration in one assumption spreads through the network over time; the temporal kernel is the mathematical function within that model that governs attenuation or amplification of influence as time elapses.

²¹ In ADI, velocity is the time it takes for a source assumption's effects to materialize to a given fraction of its eventual footprint; reach is the proportion of portfolio consequence potentially affected; footprint is the set or magnitude of nodes exposed by a source migration.


²² Consequence-weighted cumulative exposure a source assumption i generates over horizon H

ADI Diffusion Heatmap

The ADI Diffusion Heatmap shows the various assumption nodes and propagation pathways for a simplified assumption set on a LCP. The heatmap is color-coded by velocity and reach and illustrates some of the new insights that ADI can provide. These include:

- **Directional early-warning:** ADI can flag systemic exposure potential long before AGI moves materially because it measures propagation potential rather than instantaneous magnitude.
- **Velocity-informed time-to-action metrics**
- **Identification of diffusion hubs** (nodes) with modest AGI contributions but outsized ADI footprints (latent systemic drivers), facilitating targeted control.
- **Edge-level focus** points to specific edges where interventions (contract clauses, validation gates, throttles) most reduce systemic footprint.

ADI Diffusion Heatmap

ADI visualizes assumption nodes by propagation speed and pathway by reach.
Typical LCP assumptions are shown.

The ADI Diffusion Heatmap maps how key project assumptions propagate through the system by showing each assumption node, its propagation velocity, and the relative reach of its outgoing pathways. Nodes colored from cool to warm indicate increasing velocity, and pathway thickness indicates how widely an assumption's effects spread, so governance teams can quickly spot high-velocity, high-reach hubs that need validation or contingency planning. Use this ADI Diffusion Heatmap along with the node table (Table 1) to prioritize monitoring, test assumptions, and assign mitigation owners.

Table 1
Node Table

Node	LCP assumption	Velocity tier	Reach tier	Mitigation priority
A1	Labor availability (timing; skills)	Medium	Medium	High
A2	Permitting timelines and inspection cadence	Low	Low	Medium
A3	Material lead times and price volatility	Medium	Medium	High
A4 ²³	Subcontractor reliability and capacity	Medium	High	High
A5	Inspection and compliance delays	Low	Low	Medium
A6	Technology integration readiness	Medium	Medium	High
A7	Logistics and site access constraints	Low	Medium	Medium
A8	Vendor performance and single-source risk	Medium	Medium	High
A9	Long-lead equipment delivery	Low	Medium	High
A10	Funding cadence and market demand shifts	Low	High	High
A11	Design change propagation (scope risk)	High	High	Critical

²³ A4 appears twice to signal the same underlying assumption mapped to two logical positions or roles in the network (for example, the same subcontractor-reliability assumption affecting both procurement and field execution pathways). This duplication is intentional to show distinct propagation pathways and reach contexts without implying two different assumptions

Table 1
Node Table

Node	LCP assumption	Velocity tier	Reach tier	Mitigation priority
A12	Quality control and rework frequency	Medium	Low	Medium
A13	Weather and seasonal productivity effects	Medium	Medium	Medium
A14	System integration and interoperability risk	High	High	Critical
A15	Regulatory interpretation and policy shifts	Medium	Medium	High
A16	Site-specific geotechnical surprises	High	Medium	High
A17	Major vendor insolvency or program cancellation	High	High	Critical
F5 ²⁴	Systemic program failure or escalation hub	High	High	Critical

ADI reveals **diffusion hubs**. These are assumptions with modest AGI but outsized propagation potential. It translates systemic exposure into **time-to-action metrics**, guiding monitoring frequency and containment strategies.

QPM describes LCPs as entangled, measurement-sensitive, nonlinear systems. AGI and ADI work together to operationalize QPM by turning QPM theory into governance mechanics:

4.0 Emergent Fragility Index (EFI)

The **Emergent Fragility Index (EFI)** is a quantum-inspired metric that quantifies the degree to which a large complex project (LCP) is susceptible to nonlinear, system-wide amplification of risk due to entangled assumption clusters. It captures the potential for

²⁴ F5 is a designated systemic hub representing a program-level escalation or failure mode that aggregates outputs from multiple assumption nodes; it is included to show where distributed assumption effects can concentrate and require executive escalation or portfolio-level mitigation.

small, correlated migrations to produce outsized governance disruption — a hallmark of quantum project behavior where emergent properties arise from entangled subsystems.

EFI is designed to detect **latent systemic brittleness** before it manifests in AGI spikes, ADI surges, or cascading execution failures. It is especially valuable in Quantum Project Management (QPM), where classical decomposition fails to account for entanglement, feedback loops, and probabilistic propagation.

EFI provides insights into:

- **Amplification potential**, assessing how likely it is that small, correlated assumption migrations will trigger large impacts.
- **Cluster volatility**, identifying which entangled assumption clusters are entering potentially nonlinear regimes.
- **Systemic brittleness**, assessing whether the project's foundations are becoming fragile under stress.
- **Governance urgency**, addressing whether contingency, rebaselining, or executive actions should be triggered before AGI/ADI thresholds are breached.

EFI acts as a valuable **leading indicator** of emergent risk, often surfacing before AGI or ADI respond.

EFI is derived from principal component analysis (PCA) applied to the weighted covariance matrix of assumption migrations, followed by a nonlinear amplification function. (See box)

EFI (Emergent Fragility Index) is a score that tells you how fragile or vulnerable a system is based on how its assumptions are shifting. To calculate it:

1. **We look at how assumptions are changing together.** Think of each assumption (like labor availability, permitting timelines, material prices) as a moving part. Some move a lot, some barely move — and some tend to move together. This is what the “covariance matrix” captures: it’s just a fancy way of saying “how much do these assumptions move together?”
2. **We use PCA to find the most important patterns.** Principal Component Analysis (PCA) is like zooming out and saying: “Instead of tracking 50 separate assumptions, can we find a few big patterns that explain most of the movement?” It’s like grouping similar behaviors so we can focus on the biggest drivers of fragility.
3. **We give more weight to assumptions that matter more.** Some assumptions affect the whole system (like permitting delays), while others are more isolated. The “weighted” part means we don’t treat all assumptions equally — we emphasize the ones with bigger impact.
4. **We apply a nonlinear amplification function.** This means that once we find the big patterns, we don’t just add them up. We stretch the score to highlight when things are getting risky fast. It’s like turning up the volume when multiple fragile assumptions start moving together — so the EFI score reflects not just movement, but **emergent risk**.

4.1 Calculating EFI

EFI is calculated stepwise as follows:

1. Construct Weighted Covariance Matrix

Let $M_i(t)$ be the migration score of assumption i at time t , and W_i its consequence weight.

$$\text{Cov}_W(M) = \text{diag}(W) \cdot \text{Cov}(M) \cdot \text{diag}(W)$$

This matrix emphasizes high-consequence assumptions in the co-migration structure.

2. Perform PCA

Decompose the weighted covariance matrix:

$$\text{Cov}_W(M) = Q\Lambda Q^T$$

Where:

- Q = matrix of principal components (PCs)
- Λ = diagonal matrix of eigenvalues (variance explained by each PC)

Each PC represents a latent cluster of entangled assumptions.

3. Apply Cluster Amplification Function

For each principal component c , compute its score $PC_c(t)$ and apply a nonlinear amplification function²⁵:

$$A_c(t) = 1 + B \cdot \max(0, PC_c(t) - T_c)$$

Where:

- B = amplification factor (tuned via Monte Carlo²⁶ or ROC²⁷)
- T_c = threshold for emergent behavior (e.g., 90th percentile of historical PC scores)

Only PCs exceeding their threshold contribute to fragility.

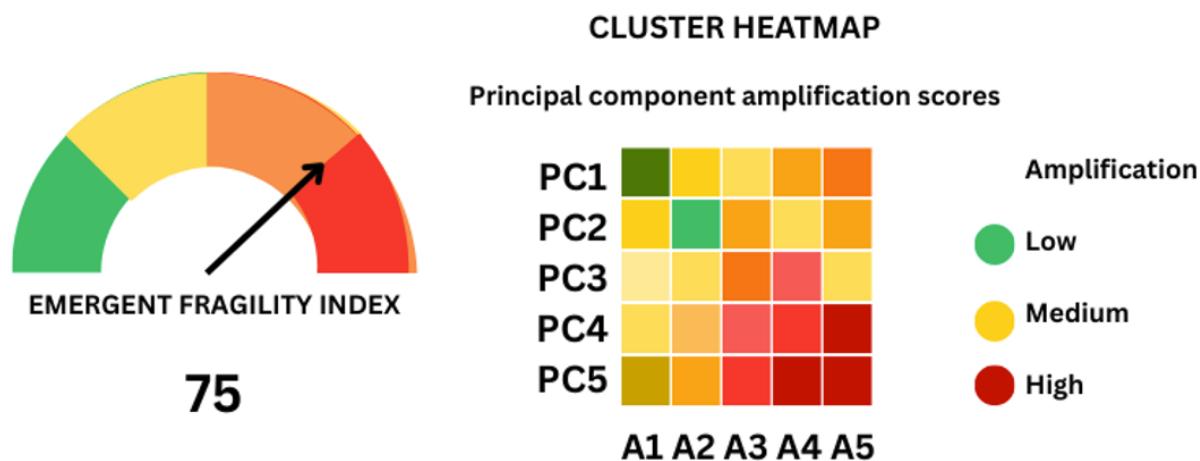
4. Aggregate into EFI

$$\text{EFI}(t) = \sum_c f(PC_c(t)) \cdot A_c(t)$$

²⁵ An event amplification multiplier is a factor applied to confidence or migration metrics following a disruptive event (e.g., regulatory change, market shock) to reflect sudden increases in uncertainty and propagation potential.

²⁶ Monte Carlo calibration uses repeated randomized simulations of plausible assumption migrations and shocks to estimate the sensitivity of EFI to parameter choices and to select amplification factors and thresholds that achieve desired detection and false alarm characteristics.

²⁷ The Receiver Operating Characteristic (ROC) curve is a statistical tool widely used in machine learning and signal analysis. It plots the True Positive Rate against the False Positive Rate across different threshold values. The area under the curve is used as a measure of how well a model distinguishes between classes (e.g., fragile vs stable states).


Where $f(PC_c)$ is a tail-emphasizing function²⁸ (e.g., square or exponential) to prioritize high-risk clusters.

EFI is normalized to a 0–100 scale for dashboarding.

4.2 EFI Gauge and Cluster Heatmap

The EFI Gauge and Cluster Heatmap provides a view of *systemic fragility* within a Large Complex Project (LCP) environment. The left panel displays the **Emergent Fragility Index (EFI)** on a scale from 0 to 100, with green, yellow, amber, and red zones indicating increasing levels of systemic vulnerability. A numeric score (e.g., 75) reflects the current fragility state, derived from principal component analysis (PCA) applied to weighted assumption migrations and amplified nonlinearly to surface emergent risk.

EFI Gauge and Cluster Heatmap

The right panel presents a **5x5 Cluster Heatmap**²⁹, mapping the top five principal components (PC1–PC5) against five amplification axes (A1–A5). Each cell is color-coded from green (low amplification) to red (high amplification). The heatmap reveals which

²⁸ A tail emphasizing function (for example, squaring or exponentiation) increases the relative contribution of large principal component scores to the aggregate fragility metric, ensuring that extreme cluster movements dominate the EFI.

²⁹ The Cluster Heatmap cross tabs principal components against amplification axes to visualize which latent clusters are being amplified along different dimensions; amplification axes are governance or scenario lenses (for example, speed of propagation, concentration, or consequence skew) chosen to surface actionable patterns.

latent patterns in assumption behavior are most responsible for amplifying fragility across the project lifecycle. A legend clarifies amplification levels.

Together, the EFI Gauge and Cluster Heatmap enable project and executive teams to:

- Monitor *systemic fragility* in real time.
- Identify high-amplification components driving emergent risk.
- Prioritize mitigation efforts based on propagation potential and coupling density.
- Support scenario modeling and stress testing across permitting, labor, supply chain, and integration domains.

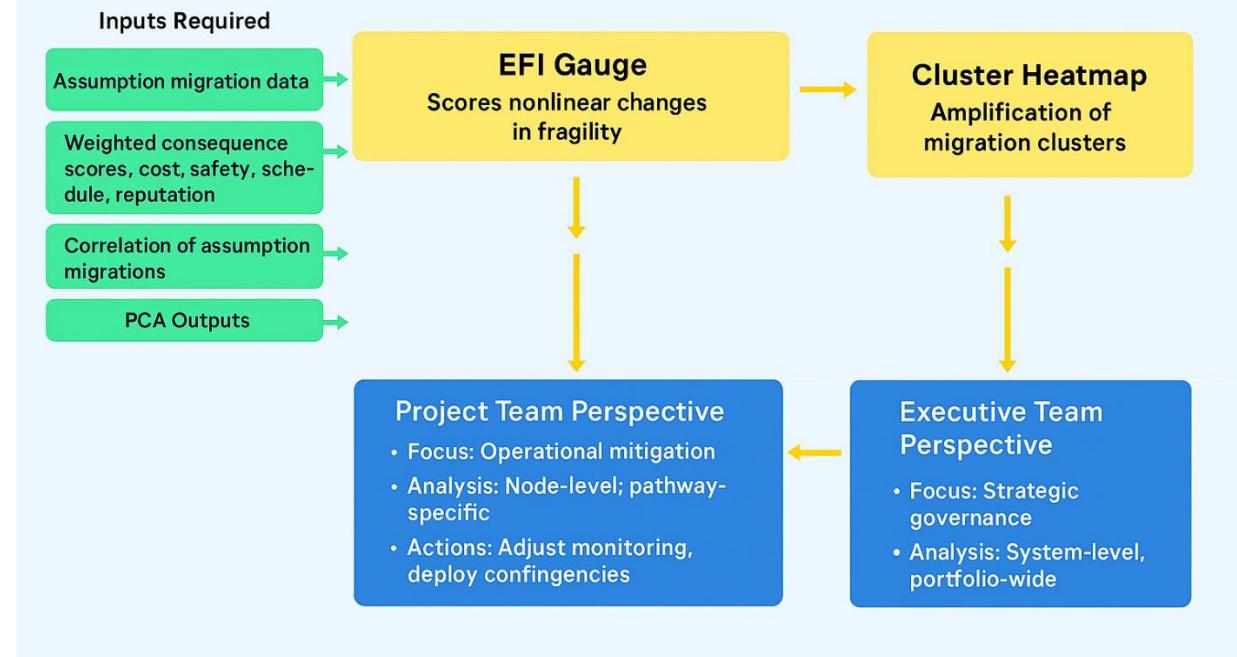
See Section 5, Operational playbook for using the EFI gauge and cluster heatmap for a more detailed look at EFI.

4.3 Synthetic Principal Components for LCP Risk Modeling

These five principal components represent typical latent drivers of fragility in large complex projects:

Table 2 Synthetic Principal Components for LCP Risk Modeling			
Principal Component	Description	Sample Inputs	Amplification Pattern
PC1 – Schedule Coupling	Captures interdependencies across permitting, inspections, and subcontractor sequencing.	Permit delays, inspection cadence, critical path density	High amplification across all axes (0.82–0.91)
PC2 – Supply Chain Volatility	Aggregates material lead times, price swings, and vendor reliability.	Steel delivery, cable availability, single-source risk	Moderate amplification (0.69–0.76)
PC3 – Labor & Productivity Variance	Reflects seasonal labor availability, skill mix, and productivity drift.	Trade mix, absenteeism, overtime fatigue	Mixed amplification (0.52–0.58)

Table 2 Synthetic Principal Components for LCP Risk Modeling			
Principal Component	Description	Sample Inputs	Amplification Pattern
PC4 – Technical Integration Risk	Models interoperability and readiness of systems and vendors.	Commissioning delays, interface mismatches	Moderate-to-low amplification (0.44–0.49)
PC5 – Regulatory & Permitting Pressure	Bundles approval timelines, policy shifts, and inspection bottlenecks.	Zoning changes, code updates	Low amplification (0.29–0.35)


These synthetic scores align with the heatmap's color gradient and support governance briefings, risk dashboards, and field-level mitigation planning. EFI acts as a **leading indicator of emergent fragility**, often surfacing before AGI or ADI respond. It highlights clusters where small migrations could trigger outsized governance disruption.

EFI is unique to QPM. Classical PM treats risk as additive and decomposable. QPM recognizes that **entangled systems exhibit emergent, nonlinear behavior**. EFI is the first metric to quantify this behavior in a governance-ready format.

It transforms QPM from theory to action — enabling project leaders to detect and manage fragility before it becomes failure.

5.0 Operational playbook for using the EFI gauge and cluster heatmap

EFI Gauge and Heatmap Usage

This section deepens and systematizes how the Emergent Fragility Index (EFI) Gauge and Cluster Heatmap are used by project and executive teams. It formalizes inputs, analytics, decision triggers, and role-appropriate actions, and explains how these indicators surface high-amplification components driving emergent risk. It references Table 1 (Node Table) and Table 2 (Synthetic Principal Components) to anchor pathway mapping and latent driver attribution³⁰. (See box)

³⁰ Latent driver attribution is the process of mapping abstract principal components back to concrete project domains, assumption nodes, and operational pathways so that statistical signals can be translated into actionable ownership and interventions.

Latent driver attribution is the process of identifying which underlying, often unobserved patterns (latent drivers) are responsible for the correlated movements in many individual assumptions. In practice it means mapping the abstract principal components or latent factors produced by a statistical decomposition (for example PCA) back to concrete project domains, assumption nodes, and operational pathways so governance teams can act on the real-world causes of emergent fragility.

Why it matters

- **Bridges math to management:** PCA and covariance analysis produce abstract components (PC1–PC5). Latent driver attribution translates those components into actionable domains (schedule coupling, supply chain volatility, etc.) so teams know what to fix, not just that something is risky.
- **Focuses interventions:** Instead of treating many scattered assumption migrations equally, attribution points to a small set of drivers that explain most of the systemic movement, enabling targeted mitigation that reduces amplification efficiently.
- **Enables accountability:** By linking a latent driver to specific nodes and owners (see Table 1), attribution creates clear ownership for controls and evidence collection.

5.1 Inputs and data discipline for EFI gauge and heatmap

- **Assumption register foundation:** Unique ID, category, baseline/current value, critical tolerance³¹ Δ_{crit} , baseline confidence and decay rate, volatility parameter³², consequence component scores (ω_{cost} , ω_{safety} , ω_{schedule} , $\omega_{\text{reputation}}$), owner, evidence link, last update; qualitative items mapped to ordinal scales with explicit distances.

³¹ Critical tolerance is the allowable deviation from a baseline assumption beyond which performance, safety, or contractual obligations are materially affected; it defines per assumption thresholds for escalation and control.

³² The volatility parameter quantifies the expected variability or dispersion of an assumption over time and is used to scale migration sensitivity and to inform monitoring cadence and contingency sizing.

- **Consequence weighting:**

$$W_i = \text{normalize}(\omega_{\text{cost}}, \omega_{\text{safety}}, \omega_{\text{schedule}}, \omega_{\text{reputation}})$$

ensures governance-relevant impact is emphasized.

- **Migration time series:**

$$M_i(t) = \text{normalized distance}(\text{current}_i(t), \text{baseline}_i)$$

with confidence decay $C_i(t)$ and event multipliers for shocks.

- **Weighted covariance^{33 34} and PCA³⁵:**

$$\text{Cov}_W(M) = \text{diag}(W) \cdot \text{Cov}(M) \cdot \text{diag}(W), \quad \text{Cov}_W(M) = Q \Lambda Q^T$$

yielding principal components $\text{PC}_1 \dots \text{PC}_5$ (see Table 3).

- **Amplification function and thresholds:**

$$A_c(t)^{36} = 1 + B \cdot \max(0, \text{PC}_c(t)^{37} - T_c), \quad \text{EFI}(t) = \sum_c f(\text{PC}_c(t)) \cdot A_c(t)$$

where T_c are escalation thresholds and $f(\cdot)$ tail-emphasizes extreme cluster movement.

³³ The weighted covariance matrix is the covariance of assumption migrations where each variable is scaled by its consequence weight; this emphasizes co movement among high impact assumptions when extracting latent patterns.

³⁴ A covariance matrix records pairwise covariances between assumption migration time series, indicating the degree to which two assumptions move together; positive covariance means they tend to increase or decrease together, negative means they move oppositely.

³⁵ PCA is a statistical technique that transforms correlated variables into a smaller set of uncorrelated principal components (PCs) that explain descending amounts of variance; in this context, PCs represent latent clusters of co migrating assumptions.

³⁶ The cluster amplification function nonlinearly scales a principal component's contribution to fragility once the component exceeds a predefined threshold, thereby emphasizing emergent, tail risk behavior rather than linear accumulation.

³⁷ A principal component score is the projection of current assumption migrations onto a specific principal component and quantifies how strongly that latent pattern is expressed at time t.

- **Network topology (Table 1):** Nodes (A1–A17, F5), directional edges, velocity tiers, reach tiers, mitigation priorities, to map PCs back to pathways and owners.

Tip: Maintain a single source of truth for register fields and pathway weights; version all changes and decisions to preserve auditability and support backtesting of thresholds.

A single source of truth is an authoritative, version-controlled repository for assumption registers and related evidence that ensures consistency, traceability, and auditability across analytics, dashboards, and governance decisions.

5.2 What the indicators tell you, and when to act

EFI gauge

- **Definition:** System-level fragility score on a 0–100 scale; green/amber/orange/red bands encode governance urgency.
- **Signal intent:** Detects nonlinear, entangled co-movement before AGI or ADI move materially.
- **Typical triggers:**
 - **Amber band:** Increase monitoring cadence (26-50)
 - **Orange band:** Initiate stress tests on top PCs, pre-stage contingencies (51 – 75)
 - **Red band:** Execute pre-approved escalation playbooks, authorize rebaselining, allocate contingency/funding, adjust portfolio posture (>75)

Cluster heatmap

- **Definition:** 5×5 panel mapping PC₁ ... PC₅ against amplification axes A₁ ... A₅, with cell colors showing cluster amplification intensity.
- **Signal intent:** Localizes which latent drivers (PCs) are entering nonlinear regimes and where amplification is concentrating.

- **Typical triggers:**

- **Isolated red cells:** Targeted control lifting³⁸ on the corresponding cluster's pathways.
- **Banding across a PC:** Systemic driver; consider portfolio-level measures or executive gating.

Typical control types that are “lifted”

- **Verification and evidence gating** - Increase frequency of data updates, require primary evidence links, and mandate peer review for affected assumptions.
- **Interface and handoff controls** - Add mandatory sign-offs, test-readiness checks, and temporary Service Level Agreements (SLAs) at fragile handoffs (e.g., design → procurement → field).
- **Procurement and supply controls** - Move from single-source to dual-source, require supplier health checks, or pre-buy critical long-lead items.
- **Schedule and sequencing controls** - Re-sequence tasks to decouple critical path items, introduce buffer windows, or freeze non-essential changes.
- **Technical assurance** - Increase integration testing cadence, require staged commissioning gates, or impose stricter acceptance criteria.
- **Financial and contractual levers** - Release contingency funds conditionally, invoke step-in rights, or require performance bonds for high-reach vendors.
- **Governance and oversight** - Move owners to daily standups, require executive watchlist reporting, or trigger audit spot checks.

³⁸ **Targeted control lifting** means temporarily increasing the rigor, frequency, or scope of controls for a specific assumption cluster or pathway identified by the Cluster Heatmap as having high amplification. It is not a blanket tightening across the project; it is a focused, time-bound escalation of controls where the heatmap shows concentrated amplification so that propagation, velocity, and reach are reduced quickly and measurably. Teams use targeted control lifting to:

- **Stop amplification early** by interrupting the pathways that let correlated assumption migrations reinforce one another.
- **Preserve resources** by concentrating effort where it reduces EFI most per unit of effort.
- **Create measurable effects** so interventions can be validated by recomputing EFI, ADI, and heatmap cells.

5.3 Core analyses to run on every cycle

- **Trend monitoring:**
 - **EFI trendline:** Detect rising slope, inflection points, and persistence; overlay AGI and ADI trends to triangulate timing and exposure.
 - **Heatmap persistence:** Identify PCs with recurring high-amplification cells; track dwell time above T_c .
- **Component attribution (Table 2):**
 - **Map PCs to domains:**
 - **PC1 – Schedule coupling:** Permitting, inspections, subcontractor sequencing.
 - **PC2 – Supply chain volatility:** Lead times, price swings, vendor reliability.
 - **PC3 – Labor & productivity variance:** Availability, skill mix, fatigue.
 - **PC4 – Technical integration risk:** Interoperability, commissioning readiness.
 - **PC5 – Regulatory & permitting pressure:** Approval timelines, policy shifts.

- **Quantify share of EFI:** Attribute percent contribution per PC using Λ ³⁹ and $A_c(t)$ ⁴⁰
- **Pathway localization (Table 1):**
 - **Crosswalk PCs → nodes/edges:** Example: PC1 spikes often implicate A11 (Design change propagation) and A4 (Subcontractor reliability), while PC2 spikes co-locate with A8 (Vendor performance) and A9 (Long-lead equipment).
 - **Velocity–reach synthesis:** Combine node velocity tiers with reach tiers to set time-to-action windows.
- **Scenario stress testing:**
 - **Shocks:** Apply synthetic migrations (e.g., +20% lead time on A3, 2-week permitting slip on A2) and re-compute EFI/heatmap to measure sensitivity.
 - **Controls-in-place simulation:** Test expected reduction in amplification after proposed mitigations (dual-sourcing, interface gating).

³⁹ **Λ —eigenvalue spectrum (PC strength)** - Λ denotes the diagonal matrix of eigenvalues from the weighted covariance decomposition used in PCA. If the weighted covariance of migrations is $\text{Cov}_W(M) = Q\Lambda Q^T$, then $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ where each λ_c measures the variance explained by principal component c . Larger λ_c means component c explains more of the weighted co-movement among assumptions and therefore has greater potential to drive system fragility. EFI attribution typically scales each component's contribution by its eigenvalue so that high-variance patterns receive proportionally more weight. **Use the normalized share $\lambda_c / \sum_k \lambda_k$ when reporting percent contribution of each PC to EFI so results are comparable across projects.**

⁴⁰ **$A_c(t)$ —amplification factor for component c at time t** - $A_c(t)$ is the nonlinear amplification multiplier applied to principal component c at time t . It converts observed component magnitude into an amplified fragility contribution when the component exceeds a predefined threshold. A common functional form is:

$$A_c(t) = 1 + B \cdot \max(0, PC_c(t) - T_c),$$

where T_c is the escalation threshold for component c and B is a tunable amplification coefficient. $A_c(t)$ increases the effective impact of a component when its activity crosses the threshold T_c , producing the nonlinear behavior. EFI is designed to surface. If $PC_c(t)$ is below T_c , $A_c(t)$ is near 1 (no amplification); if it exceeds T_c , $A_c(t)$ grows and magnifies that component's contribution to EFI.

Choose T_c from historical backtests or governance tolerance (e.g., the 75th percentile of past PC magnitudes) and set B to reflect how sharply you want the system to flag emergent risk (larger $B \rightarrow$ stronger nonlinear response).

5.4 Project team usage: workflow, decisions, and actions

- **Primary focus:** Tactical containment, decoupling, and assurance of execution pathways.
- **Workflow steps:**
 - **Signal intake:**
 - **EFI orange/red:** Open a “fragility watch” ticket; escalate monitoring on implicated PCs.
 - **Heatmap red cells:** Identify affected nodes/edges in Table 1 and assign mitigation owners.
 - **Localization and validation:**
 - **Root mapping:** Trace top PCs to specific nodes (e.g., A11, A14, A17).
 - **Evidence check:** Validate current values, decay rates, and recent events; correct stale register entries.
 - **Controls and playbooks:**
 - **Decouple pathways:** Segment work, throttle interfaces, introduce validation gates at fragile handoffs.
 - **Buffering:** Pre-buy critical materials; stage spares; re-sequence tasks to avoid high-coupling windows.
 - **Supplier posture:** Activate dual-source or hedging playbooks on A8/A9; pre-qualify backups.
 - **Interface discipline:** For low-AGI/high-ADI nodes, institute SLAs, test-readiness checklists, and owner accountability.
 - **Time-to-action:**
 - **Velocity-aligned cadence:** High-velocity nodes → daily checks; medium → twice weekly; low → weekly with exception alerts.
 - **Containment metrics:** Expected reduction in reach and amplification per intervention; update weights if verified.

- **Role-specific outputs:**
 - **Mitigation matrix:** Node, owner, control action, expected effect on velocity/reach, due date.
 - **Assurance log:** Evidence links, test outcomes, threshold recalibration proposals.
 - **Read-across notes:** Lessons applied to similar nodes or sibling projects.

5.5 Executive team usage: governance, thresholds, and portfolio levers

- **Primary focus:** Strategic posture, resource allocation, and decision rights aligned to systemic signals.
- **Workflow steps:**
 - **Posture review:**
 - **EFI bands vs. gates:** Define decision gates (e.g., $EFI \geq 70$ requires board sign-off for scope additions; $EFI \geq 80$ triggers portfolio contingency release).
 - **Cluster prioritization:** PCs with sustained amplification (e.g., PC1, PC5) elevate to steering committee oversight.
 - **Resource and portfolio measures:**
 - **Rebaselining authorization:** Approve scope/schedule resets when PCs indicate non-recoverable coupling.
 - **Funding cadence:** Advance contingency drawdown or shift cashflow to buffer supply chain PCs (PC2).
 - **Vendor strategy:** Mandate diversification or step-in rights for A8/A17; establish enterprise-level supplier health monitoring.
 - **Regulatory engagement:** Mobilize policy liaison and permitting acceleration for PC5.
 - **Governance controls:**

- **Decision rights alignment:** Require ADI/EFI evidence packs at major approvals; set minimum AGI levels for high-ADI nodes.
- **Audit focus:** Direct internal audit to low-AGI/high-ADI nodes driving high-amplification PCs; verify traceability and thresholds.
- **Role-specific outputs:**
 - **Executive dashboard tiles:** EFI trend with gates; top PCs; portfolio exposure by domain; approved interventions and outcomes.
 - **Threshold register:** Defined T_c , band definitions, and ROC⁴¹-tuned amplification factor B ⁴². (See box on tuning B using ROC.)
 - **Benchmark pack: Cross-project EFI/PC comparisons; identification of recurring systemic drivers**

⁴¹ **Receiver Operating Characteristic.** It's a curve that plots **true positive rate (sensitivity)** against **false positive rate (1 – specificity)** for different classifier thresholds; the area under the ROC curve (AUC) measures overall discriminative power. In the EFI context, ROC analysis is used to choose an amplification factor B (and/or thresholds T_c) by trading off early detection of true emergent events against the rate of false alarms.

⁴² Threshold T_c is the cutoff (for example, a historical percentile) above which a principal component is considered to exhibit emergent behavior; thresholds and the amplification factor B are calibrated using techniques such as Receiver Operating Characteristic (ROC) analysis to balance true and false alarms.

How to tune B using ROC analysis

1. **Define historical positive events** - Label past time windows where emergent failure or costly cascades occurred as *positives* and normal windows as *negatives*. Use outcomes such as cascading rework, major rebaselining, or portfolio escalations.
2. **Simulate EFI with candidate B values** - For each candidate B (e.g., a grid from 0.1 to 5.0), compute $A_c(t)$ and the resulting EFI time series using historical PC scores and thresholds T_c .
3. **Generate binary predictions** - For each B , convert EFI into binary alerts using a chosen EFI alert threshold (e.g., $EFI \geq 75$). Each time window yields a predicted alert or no alert.
4. **Compute ROC points** - For each B compute **true positive rate (TPR)** and **false positive rate (FPR)** by comparing predicted alerts to historical positives. Plot TPR vs. FPR to form an ROC curve parameterized by B .
5. **Select operating point** - Choose B using one of these rules:
 - o **Youden's J**: maximize $TPR - FPR$ for balanced sensitivity/specificity.
 - o **Cost-ratio rule**: pick B that minimizes expected cost where $cost = C_{miss} \cdot FN + C_{false} \cdot FP$.
 - o **Governance preference**: choose a point with higher sensitivity if early detection is critical, or higher specificity if false alarms are costly.
6. **Validate out of sample** - Test the chosen B on holdout periods or other projects to check robustness and avoid overfitting.
7. **Operationalize and monitor** - Put the chosen B into production, track alert performance, and periodically re-tune as the project environment or data quality changes.

5.6 How the indicators surface high-amplification components

- **Detection logic:**
 - o **EFI rise without AGI/ADI spikes**: Implies correlated micro-migrations; prioritize cluster analysis before point-in-time magnitudes.
 - o **Heatmap red in PC1/PC4**: Schedule coupling and technical integration entering nonlinear regimes; expect phase-change behaviors (e.g., rework cascades).

- **Heatmap red in PC2/PC5:** Supply chain and regulatory pressure clusters concentrating risk; expect footprint growth across cost and stakeholder domains.
- **Operational localization (Table 2):**
 - **PC1 high amplification → A11, A4, A2/A5:** Reinforce design freeze discipline, subcontractor capacity gating, inspection cadence smoothing.
 - **PC2 high amplification → A8, A3, A9:** Dual-source mandates, pre-buy, logistics buffers.
 - **PC4 high amplification → A6, A14:** Integration readiness testing, interface contracts, phased commissioning.
 - **PC5 high amplification → A2, A10, A15:** Early regulatory engagement, scenario permitting, funding cadence recalibration.
 - **Systemic hub F5:** If multiple PCs feed F5, escalate immediately; align enterprise levers and scenario triage.
- **Action confirmation:**
 - **Pre/post measurement:** Recompute EFI and heatmap after interventions; confirm amplification decline in targeted PCs and reduced ADI reach/velocity along mapped edges.

5.7 Governance-ready triggers and thresholds

- **EFI bands:**
 - **Green (≤ 25):** Routine monitoring; no gating changes.
 - **Amber (26-50):** Increase monitoring cadence.
 - **Orange (51–75):** Initiate targeted mitigations on top PCs; executive watchlist.
 - **Red (≥ 75):** Execute escalation playbooks; board-level oversight; portfolio adjustments.
- **Heatmap criteria:**
 - **Cell persistence (≥ 2 consecutive periods):** Mandatory intervention at the cluster level.

- **Multi-PC convergence (≥ 3 PCs in amber/red):** Pre-emptive rebaselining assessment.
- **PC contribution share ($\geq 35\%$ of EFI):** Elevate driver to steering committee agenda.
- **Node path criteria (Table 1):**
 - **High-velocity + high-reach + low AGI:** Immediate owner assignment, interface gating, and contingency allocation.

5.8 Deliverables and assurance artifacts

- **For project teams:**
 - **Controls register:** Node-level actions, expected reduction in velocity/reach, verification dates.
 - **Scenario pack:** Stress test results with EFI/heatmap deltas and ADI pathway changes.
 - **Lessons learned:** Read-across notes for future clusters.
- **For executive teams:**
 - **Decision memo:** EFI band status, top PCs, proposed levers, approval sought, expected impact.
 - **Portfolio rollup:** Cross-program EFI comparison, systemic PC patterns, enterprise mitigations.
 - **Audit brief:** Evidence trail, threshold rationale, backtest results.

5.9 Concluding guidance

- **Don't wait for lagging KPIs:** Use EFI and the heatmap as leading indicators; act on clusters, not just point deviations.
- **Balance signal and action:** Tie every red/amber signal to a concrete, time-bound intervention with measurable reduction targets.
- **Close the loop:** Re-measure, recalibrate thresholds, and update consequence weights and pathway maps; build a learning system that strengthens governance fidelity over time.

6.0 Integrating AGI, ADI, and EFI in large complex projects

Large complex projects are living systems. Assumptions do not sit quietly in registers; they interact, reinforce, and occasionally cascade into failure. Integrating AGI (Assumption Governance Index), ADI (Assumption Diffusion Index), and EFI (Emergent Fragility Index) replaces static documentation with system intelligence. Together, these metrics make entanglement explicit, handle nonlinearity and emergence, and deliver predictive advantages that materially improve governance and management outcomes.

6.1 What each metric does in the system

- **AGI: Governance maturity and control**
 - Captures definition quality, ownership, validation cadence, escalation pathways, and audit traceability.
 - Highlights weak stewardship that allows assumptions to drift, fragment, or become orphaned across interfaces.
 - Converts governance from compliance-driven to control-competency-driven by quantifying readiness and accountability.
- **ADI: Propagation reach and velocity**
 - Maps how assumptions traverse technical, contractual, operational, and behavioral networks.
 - Quantifies who and what gets affected, how fast, and through which pathways, surfacing hubs, bridges, and bottlenecks.
 - Makes entanglement visible by exposing high-degree nodes and critical connectors that magnify downstream impacts.
- **EFI: System-level fragility**
 - Derives latent risk structure via PCA on weighted assumption migrations, then applies nonlinear amplification to reveal tipping points.
 - Measures how interacting assumptions co-move and escalate beyond linear expectations.
 - Turns scattered signals into a coherent system posture indicator for executive decision-making.

6.2 Making entanglement explicit

- **Network visibility:** ADI visualizes dependency topology—who is connected to whom and through which pathways—so managers can see which assumptions act as central hubs or fragile bridges.
- **Governance gaps as risk multipliers:** Low AGI scores on high-ADI nodes signal dangerous entanglement where influential assumptions with weak controls are primed for systemic impact.
- **System posture clarity:** EFI translates complex entanglements into a single fragility score, anchoring conversations on where the system is drifting and why.

The triad shifts the conversation from “What assumptions do we have?” to “How do these assumptions interact, propagate, and amplify risk?”

6.3 Handling nonlinearity and emergence

- **Nonlinear amplification:** EFI’s amplification function elevates co-movement and coupling effects, so simultaneous small deviations register as major systemic shifts when they cross velocity or coupling thresholds.
- **Feedback loops and phase transitions:** ADI captures pathways where feedback (e.g., delay → demobilization → rework → further delay) can create step-changes rather than gradual impacts.
- **Early warning on tipping points:** Combining AGI (control strength) with ADI (propagation dynamics) predicts when normal fluctuations may become emergent events, raising the EFI before failure is observable in schedules or costs.

6.4 Predictive advantages over static assumption registers

- **System modeling vs. list maintenance**
 - **Static register:** Catalogs assumptions, owners, and review dates; useful for record-keeping but blind to interaction and propagation.
 - **AGI-ADI-EFI:** Models interaction geometry, control strength, and emergent behavior, enabling forward-looking risk posture adjustments.

- **Actionable thresholds vs. periodic reviews**
 - **Static register:** Detects issues at review points; escalation is manual and often delayed.
 - **AGI-ADI-EFI:** Establishes thresholds for governance maturity, propagation velocity, and fragility; triggers automated escalation and targeted interventions.
- **Resource prioritization vs. broad coverage**
 - **Static register:** Treats assumptions uniformly, diluting focus.
 - **AGI-ADI-EFI:** Targets high-impact nodes (high ADI), weakly governed assumptions (low AGI), and emergent hot spots (rising EFI), concentrating resources where risk is truly systemic.
- **Scenario fidelity vs. qualitative speculation**
 - **Static register:** Struggles to simulate multi-assumption interactions.
 - **AGI-ADI-EFI:** Supports stress testing of networked scenarios, revealing propagation routes, expected velocity, and coupled failure modes.

6.5 Governance outcomes

- **Risk-informed decision rights:** Boards and steering committees can align decision gates with AGI thresholds and require ADI/EFI evidence before approvals, ensuring controls match propagation risk.
- **Targeted audits and controls:** Internal audit and PMO teams move from generic compliance checks to focused control lifting on low-AGI/high-ADI assumptions and EFI-driving clusters.
- **Portfolio comparability:** Standardized indices allow cross-project benchmarking, enabling enterprise risk functions to identify systemic patterns and intervene across programs.

6.6 Management outcomes

- **Operational playbooks tied to metrics:** Field and integration teams use ADI pathway maps to design modular contingencies and segment work so propagation routes are buffered or decoupled.

- **Dynamic resourcing:** EFI trendlines guide labor, procurement, and commissioning posture (e.g., pre-buy, dual-source, staggered mobilization) when fragility rises.
- **Interface discipline:** Low-AGI nodes near high-ADI pathways trigger interface control plans (owners, SLAs, test-readiness) that prevent drift from converting into cascade events.

6.7 Practical integration approach

- **Baseline and thresholds:** Establish AGI baselines per assumption class; define ADI reach/velocity bands; set EFI escalation thresholds that trigger pre-approved actions.
- **Data discipline:** Instrument assumption changes (migrations), maintain pathway weights, and log governance events; ensure traceability so indices are auditable.
- **Closed-loop governance:** Use index movements to initiate playbooks; record actions and outcomes to recalibrate weights and thresholds, improving predictive fidelity over time.

6.8 Direct benefits realized

- **Earlier detection of systemic risk:** Rising EFI tied to specific ADI pathways and low-AGI nodes surfaces problems weeks before schedule or cost variances appear.
- **Focused mitigation with measurable impact:** AGI upgrades on high-ADI nodes reduce EFI, providing quantifiable benefits rather than generic “more reviews.”
- **Reduced surprise failures:** Nonlinear behaviors and emergent cascades become monitored phenomena, not post-mortem discoveries.

7.0 Summary

AGI, ADI, and EFI operationalize the realities of large complex projects: entanglement, nonlinearity, and emergence. They elevate governance from compliance to control, and management from reaction to anticipation. Compared to compiling and periodically reviewing an assumption register, the integrated triad delivers a predictive, threshold-driven, and auditable system that converts complex interactions into targeted actions—engineering resilience before fragility becomes failure.

In this paper we highlighted that Large Complex Projects (LCPs) face persistent governance failures positing that these are driven by hidden, shifting foundations rather than single discrete events. Given the myriad assumptions that underpin the scope, quantities, costs, schedules and execution plans we recognize that these migrate, driven by micro-migrations that go unnoticed until they synchronize into macro failure.

The Assumption Governance Index (AGI), described in more detail in an earlier paper, is summarized here to provide a framework for the developed Emergent Fragility Index (EFI). The AGI quantifies the current integrity of a project's assumption foundation.

Complementing AGI is the Assumption Diffusion Index (ADI), a dynamic diffusion metric that quantifies how a change to one or more assumptions is likely to propagate across the assumption network. Together AGI and ADI set the stage for the papers focus on fragility.

The Emergent Fragility Index (EFI) assesses system level fragility by measuring how interacting assumptions co-move and escalate beyond linear expectations. In Quantum Project Management terms it provides focus on emergence and entanglement, properties of all complex systems such as what we find in LCP.

The integrated framework of AGI-ADI-EFI transforms assumption management from a passive administrative task into a predictive governance capability. Planning can evaluate a range of scenarios, identify high velocity and high reach assumptions, and develop appropriate, more surgical contingency plans that can be triggered by the values of these metrics. The predictive nature of EFI is particularly powerful.

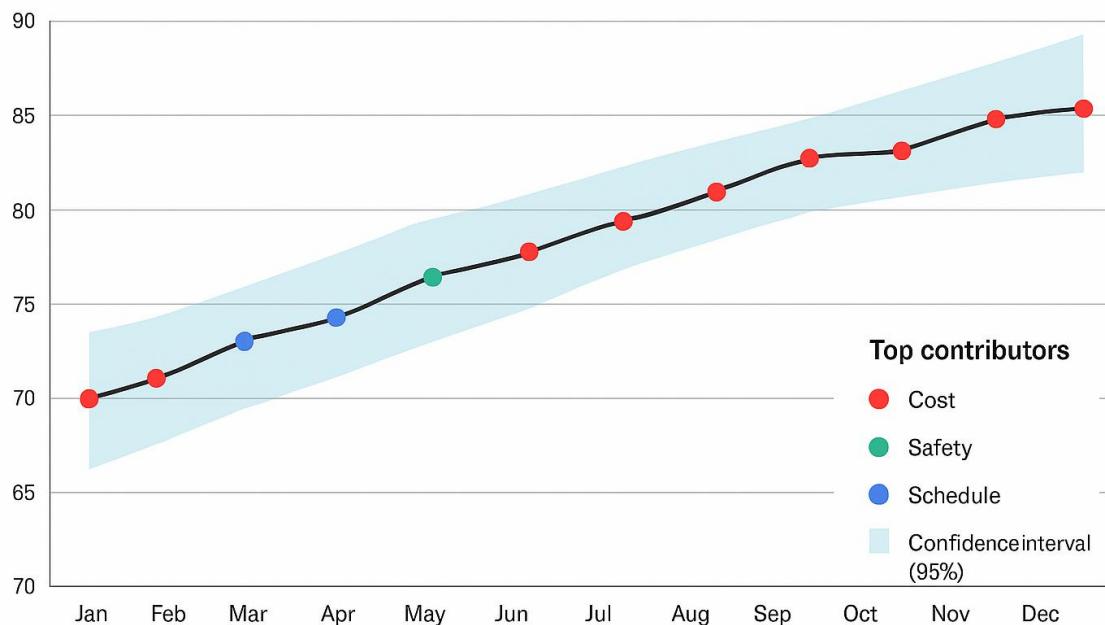
In summary:

- AGI highlights erosion of consequential assumptions.
- ADI reveals how changes spread across entangled networks.
- EFI detects nonlinear fragility before it manifests.

Appendix 1

AGI Trend Chart

A synthetic dataset was constructed to use to illustrate the AGI Trend Chart. It covers 12 months, includes AGI values, confidence intervals, and contributor weights (cost, safety, schedule, reputation).


Synthetic AGI Dataset (Jan–Dec)

Month	AGI	Lower CI	Upper CI	Cost	Safety	Schedule	Reputation	Top Contributor
Jan	72	68	76	0.35	0.25	0.20	0.20	Cost ●
Feb	74	70	78	0.30	0.30	0.25	0.15	Safety ●
Mar	76	72	80	0.25	0.35	0.25	0.15	Safety ●
Apr	77	73	81	0.28	0.32	0.25	0.15	Safety ●
May	79	75	83	0.30	0.25	0.30	0.15	Schedule ●
Jun	80	76	84	0.27	0.28	0.30	0.15	Schedule ●
Jul	82	78	86	0.25	0.30	0.25	0.20	Safety ●
Aug	83	79	87	0.28	0.27	0.25	0.20	Cost ●
Sep	84	80	88	0.30	0.25	0.25	0.20	Cost ●
Oct	85	81	89	0.25	0.30	0.25	0.20	Safety ●
Nov	86	82	90	0.28	0.27	0.25	0.20	Cost ●
Dec	87	83	91	0.25	0.30	0.25	0.20	Safety ●

The **illustrated line chart** plots AGI values (black line) across months with **confidence bands** represented by the shaded area between Lower CI and Upper CI. Colored markers reflect the top contributor for each month according to the following color scheme.

- ● Cost
- ● Safety
- ● Schedule
- ● Reputation

AGI Trend Chart

References

1. The GIGA Factor; Program Management in the Engineering & Construction Industry; CMAA; ISBN 978-1-938014-99-4; 2011
https://www.researchgate.net/publication/299979792_The_GIGA_Factor_Program_Management_in_the_Engineering_Construction_Industry
2. Theory of Management of Large Complex Projects; Construction Management Association of America (2015); ISBN 580-0-111776-07-9
https://www.researchgate.net/publication/299980338_Theory_of_Management_of_Large_Complex_Projects
3. Quantum Project Management A monograph on a new theory for management of large complex projects (2024); ISBN 978-1-304-08165-0
https://www.researchgate.net/publication/387334326_Quantum_Project_Management_A_monograph_on_a_new_theory_for_management_of_large_complex_projects
4. Aleatory vs. Epistemic Uncertainties: Principles and Challenges Principles and Challenges; Nathan Siu, Julie Marble; Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Presentation at ASME PVP Conference Baltimore, MD July 20, 2011; <https://www.nrc.gov/docs/ML1120/ML112000408.pdf>
5. Prieto, R. (2025). Metrics for Assumption Management in Large Complex Projects, *PM World Journal*, Vol. XIV, Issue XII, December. <https://pmworldlibrary.net/wp-content/uploads/2025/12/pmwj159-Dec2025-Prieto-metrics-for-assumption-management-large-complex-projects.pdf>
6. Prieto, R. (2026). Operationalizing Quantum Project Management: Defining Improved Metrics for Management of Large Complex Projects, *PM World Journal*, Vol. XV, Issue I, January. <https://pmworldlibrary.net/wp-content/uploads/2026/01/pmwj160-Jan2026-Prieto-Operationalizing-Quantum-Project-Management.pdf>

About the Author

Bob Prieto

Chairman & CEO
Strategic Program Management LLC
Jupiter, Florida, USA

Bob Prieto is Chairman & CEO of Strategic Program Management LLC focused on strengthening engineering and construction organizations and improving capital efficiency in large capital construction programs. Previously, Bob was a senior vice president of Fluor, focused on the development, delivery, and turnaround of large, complex projects worldwide across all of the firm's business lines; and Chairman of Parsons Brinckerhoff, where he led growth initiatives throughout his career with the firm.

Bob's board level experience includes Parsons Brinckerhoff (Chairman); Cardno (ASX listed; non-executive director); Mott MacDonald (Independent Member of the Shareholders Committee); and Dar al Riyadh Group (current)

Bob consults with owners of large, complex capital asset programs in the development of programmatic delivery strategies encompassing planning, engineering, procurement, construction, financing, and enterprise asset management. He has assisted engineering and construction organizations to improve their strategy and execution and has served as an executive coach to a new CEO. He is author of eleven books, over 1000 papers and National Academy of Construction Executive Insights, and an inventor on 4 issued patents.

Bob's industry involvement includes the National Academy of Construction and Fellow of the Construction Management Association of America (CMAA). He serves on the New York University Tandon School of Engineering Department of Civil and Urban Engineering Advisory Board and New York University Abu Dhabi Engineering Academic Advisory Council and previously served as a trustee of Polytechnic University. He has served on the Millennium Challenge Corporation Advisory Board and ASCE Industry Leaders Council. He received the ASCE Outstanding Projects and Leaders (OPAL) award in Management (2024). He was appointed as an honorary global advisor for the PM World Journal and Library.

Bob served until 2006 as one of three U.S. presidential appointees to the Asia Pacific Economic Cooperation (APEC) Business Advisory Council (ABAC). He chaired the World Economic Forum's Engineering & Construction Governors and co-chaired the infrastructure task force in New York after 9/11. He can be contacted at rpstrategic@comcast.net.