

Sustainability by Design: Balancing Innovation and Performance in Complex Digital Projects¹

Doğa Ilhan

Abstract

Project managers are facing an increasingly difficult task as software-intensive complex projects (SICPs) grow in scope and impact: finding a balance between performance and innovation and sustainability requirements. Data centres, AI training, and cloud infrastructure have significantly increased environmental footprints, despite the fact that digital systems are frequently thought to have less of an impact than physical megaprojects. This article examines how sustainability can be implemented during the early phases of software-intensive project design using frameworks such as Responsible Project Management (RPM), carbon-aware computing, and lifecycle thinking, as well as industry examples from Google, Microsoft, and Meta. According to the analysis, when sustainability is treated as a core competency rather than an afterthought, it can enhance rather than limit innovation.

Introduction: The Sustainability Dilemma in Technology

Consumer expectations regarding sustainability are shifting rapidly. A survey reported by Forbes indicates that 62% of consumers are willing to change their purchasing behaviour to reduce environmental impact (Forbes, 2023). As digital products and services continue to grow, this places new pressure on organisations developing software-intensive systems.

Software-intensive complex projects differ from traditional consumer goods. They resemble Complex Products and Systems (CoPPS), which are high-cost, high-integration, multi-component systems with long life cycles (Hobday & Brady, 2000). However, unlike traditional CoPPS, the environmental impacts of digital systems are less visible and more difficult to quantify – requiring new approaches to sustainability in project design and governance.

The Environmental Cost of Digital Innovation

The tech sector currently contributes approximately 7% of global carbon emissions, and this share is projected to grow with continued expansion of cloud computing and AI (Ukpanah, 2024). Large-scale AI models require extensive data centre infrastructure. Even during training phases, these models consume significant energy and water (Ren, 2023).

¹ How to cite this paper: Ilhan, D. (2026). Sustainability by Design: Balancing Innovation and Performance in Complex Digital Projects; *PM World Journal*, Vol. XV, Issue I, January.

The International Energy Agency warns that the electricity demand of global data centres may surpass Japan's current national consumption by 2030 (International Energy Agency, 2025). This represents not only an environmental concern but also a systemic operational risk.

Several leading firms illustrate this tension. Microsoft reported a 30% increase in carbon emissions since 2020 due to expansion of data centres supporting AI (Nunwick, 2024). Meta's models require substantial energy inputs, though precise data remains limited (Bailey, 2024). The larger trend indicates that, without intentional strategic action, innovation in AI and cloud computing may directly jeopardise sustainability commitments.

Why Sustainability Often an Afterthought

Sustainability is often left out of early-stage planning in SICPs, despite awareness of environmental impacts. One key factor is speed-to-market pressure, particularly in the competitive AI sector. When OpenAI, Google, and Mistral released new frontier models within a 12-hour period, competitive urgency clearly outweighed sustainability considerations (Shittu, 2025). Similarly, Meta's release strategy for open-source models is designed to pressure closed-source competitors (PYMNTS, 2025).

This is not merely a technical issue, but a cultural and governance issue. Many organisations define project success using time, cost, and quality alone. When sustainability is not embedded into project success criteria, it is inevitably treated as a secondary concern.

Industry Responses: Contradictions and Innovation

• Google: Carbon-Intelligent Computing

Google developed carbon-intelligent computing to schedule non-urgent computing tasks during periods of higher renewable energy availability (Penrod, 2023). This demonstrates that sustainability can be enabled through operational intelligence, not just infrastructure replacement.

• Microsoft: AI as Both Risk and Remedy

Microsoft's sustainability reporting frames AI as both a contributor to emissions and a solution to reducing them – highlighting potential applications in carbon capture, battery innovation, and climate modelling (Nunwick, 2024). Critics caution that without measurable net reduction, such framing risks greenwashing. Nonetheless, the approach signals an emerging belief that the same systems producing environmental strain may contribute to addressing it.

Embedding Sustainability into Project Design

1. Responsible Project Management (RPM)

RPM replaces the traditional triple constraint with economy, environment, and society, integrating ethical and sustainability considerations into the core of project governance

(Sato, 2025; Tinoco, Sato & Hasan, 2016). It encourages anticipation of long-term effects, stakeholder inclusion, and reflexivity in decision-making.

2. Green Software Engineering

The Green Software Foundation defines green software as software designed to minimise carbon emissions. Key principles include carbon efficiency, hardware efficiency, energy awareness, and measurement (Green Software Foundation, n.d.).

3. Carbon-Aware Computing and Scheduling

Carbon-aware computing adjusts computing workloads based on real-time grid carbon intensity (Sustainability Directory, 2025). Google's TPU optimisations show significant gains in carbon efficiency using this method (Patterson & Ranganathan, 2025).

4. Lifecycle Thinking in Software Architecture

LCT considers environmental impacts across the full lifecycle of the system, from design to decommissioning (Farjana, Mahmud & Huda, 2021). Applied to software architecture, it encourages modularity, maintainability, and energy-efficient operations (Maier, Emery & Hilliard, 2001).

5. Agile Integration and Modularisation

While Agile development may increase energy consumption through rapid iteration, sustainability can be integrated into Agile through environmental impact reviews and iterative design choices (Tardini, 2024). Modularisation supports this by reducing system complexity and resource waste (Martin, n.d.).

Conclusion: Redefining Performance Metrics

In software-intensive complex projects, striking a balance between sustainability and innovation is not only feasible, but also becoming more and more essential. The frameworks and examples presented show that when sustainability is viewed as a design principle rather than a limitation, it becomes feasible.

Sustainability should be integrated into project success criteria, architectural decision-making, and operational management. For organisations willing to shift perspectives, sustainability offers not a slowdown in innovation, but an opportunity for strategic advantage.

AI Use Declaration: ChatGPT was only used for evaluating the article's final readability. The author alone wrote, analysed, and interpreted everything.

References

Bailey, N. (2024) ‘The Carbon Footprint of LLMs — A Disaster in Waiting?’, Medium, 2 September. Available at: <https://nathanbaileyw.medium.com/the-carbon-footprint-of-llms-a-disaster-in-waiting-6fc666235cd0>

Davies, A. and Hobday, M. (2005) *The Business of Projects: Managing Innovation in Complex Products and Systems*. Cambridge: Cambridge University Press, p. 180.

Farjana, S.H., Mahmud, M.A.P. and Huda, N. (2021) *Life Cycle Assessment for Sustainable Mining*. Amsterdam: Elsevier.

Forbes, K. (2023) ‘The Importance of Sustainability in Business’, Vanderbilt + UBC Corporate Sustainability Certificate. Available at: <https://business.vanderbilt.edu/corporate-sustainability-certificate/article/sustainability-in-business/>

Green, R. (2024) ‘Sustainability: Big Tech’s AI push putting climate targets at risk’, International Bar Association, 10 July. Available at: <https://www.ibanet.org/sustainability-big-techs-ai-push-putting-climate-targets-at-risk>

Green Software Foundation (n.d.) Introduction. Available at: <https://learn.greensoftware.foundation/introduction/>

Hobday, M. and Brady, T. (2000) ‘A fast method for analysing and improving complex software processes’, *R&D Management*, 30(1), pp. 1–21. Available at: <https://onlinelibrary.wiley.com/doi/epdf/10.1111/1467-9310.00153>

International Energy Agency (IEA) (2025) ‘AI is set to drive surging electricity demand from data centres while offering the potential to transform how the energy sector works’, IEA News, 10 April. Available at: <https://www.iea.org/news/ai-is-set-to-drive-surging-electricity-demand-from-data-centres-while-offering-the-potential-to-transform-how-the-energy-sector-works>

Maier, M.W., Emery, D. and Hilliard, R. (2001) ‘Software architecture: Introducing IEEE Standard 1471’, *Computer*, 34(4), pp. 107–109. Available at: <https://ieeexplore.ieee.org/document/917550>

Martin, T. (n.d.) ‘All You Need to Know About Modularization’, Modular Management. Available at: <https://www.modularmanagement.com/blog/all-you-need-to-know-about-modularization>

Nunwick, A. (2024) ‘Explainer: Is Microsoft’s AI push collapsing its carbon commitment?’, Verdict, 17 May. Available at: <https://www.verdict.co.uk/news/explainer-is-microsofts-ai-push-collapsing-its-carbon-commitment/>

Penrod, E. (2023) ‘Google taps “carbon-intelligent” computing platform to help maintain grid reliability in power crises’, Utility Dive, 7 November. Available at: <https://www.utilitydive.com/news/google-carbon-intelligent-computing-platform-system-reliability-demand-response-grid-emergency/698958/>

Patterson, D. and Ranganathan, P. (2025) ‘TPUs improved carbon-efficiency of AI workloads by 3x’, Google Cloud Blog, 5 February. Available at: <https://cloud.google.com/blog/topics/sustainability/tpus-improved-carbon-efficiency-of-ai-workloads-by-3x>

PYMNTS (2025) ‘Meta’s Llama 4 Models Are Bad for Rivals but Good for Enterprises, Experts Say’, PYMNTS, 9 April. Available at: <https://www.pymnts.com/artificial-intelligence-2/2025/metasp-llama-4-models-are-bad-for-rivals-but-good-for-enterprises-experts-say/>

Ren, S. (2023) ‘How much water does AI consume? The public deserves to know’, OECD.AI Policy Observatory, 30 November. Available at: <https://oecd.ai/en/wonk/how-much-water-does-ai-consume>

Sato, C. (2025) Sustainability in Project Management. Managing Complex Projects, Products, and Systems, Week 10 Lecture Slides, University of Sussex.

Shittu, E. (2025) ‘AI model race heats up with OpenAI, Google, DeepSeek releases’, TechTarget, 26 March. Available at: <https://www.techtarget.com/searchenterpriseai/news/366621220/AI-model-race-heats-up-with-OpenAI-Google-DeepSeek-releases>

Sustainability Directory (2025) ‘Carbon-Aware Computing’, ESG Sustainability Directory, 26 January. Available at: <https://esg.sustainability-directory.com/term/carbon-aware-computing/>

Tardini, D.H. (2024) ‘Sustainability in Agile Project Management’, Institute of Project Management, 16 September. Available at: <https://projectmanagement.ie/blog/sustainability-in-agile-project-management/>

Tinoco, R., Sato, C. and Hasan, R. (2016) ‘Responsible Project Management: Beyond the Triple Constraints’, The Journal of Modern Project Management, May–August 2016, pp. 80–93

UL Solutions (n.d.) Software Intensive Systems. Available at: <https://www.ul.com/sis>

Ukpanah, I. (2024) ‘Environmental Impact of Technology: Stats, Trends and Insights’, GreenMatch. Available at: <https://www.greenmatch.co.uk/blog/technology-environmental-impact>

About the Author

Doğa Ilhan

Brighton, United Kingdom

Doğa Ilhan recently completed her MSc in Engineering Business Management at the University of Sussex and holds a Bachelor's degree in Computer Engineering. Her academic and professional interests include project management, sustainability in technology, and digital transformation in complex system environments. She has worked on research projects focusing on IT integration and responsible project governance. She currently lives in Brighton, United Kingdom. She can be contacted at dogailhann@hotmail.com.